No one knows exactly how big space is

From the perspective of an Earthling, outer space is a zone that occurs about 100 kilometers (60 miles) above the planet, where there is no appreciable air to breathe or to scatter light. In that area, blue gives way to black because oxygen molecules are not in enough abundance to make the sky blue.

Further, space is a vacuum, meaning that sound cannot carry because molecules are not close enough together to transmit sound between them. That’s not to say that space is empty, however. Gas, dust and other bits of matter float around “emptier” areas of the universe, while more crowded regions can host planets, stars and galaxies.

No one knows exactly how big space is. The difficulty arises because of what we can see in our detectors. We measure long distances in space in “light-years,” representing the distance it takes for light to travel in a year (roughly 5.8 trillion miles, or 9.3 trillion kilometers).

 The galaxy MACS0647-JD (inset) appears very young and is only a fraction of the size of our own Milky Way. The galaxy is about 13.3 billion light-years from Earth, the farthest galaxy yet known, and formed 420 million years after the Big Bang. Image taken by Hubble Space Telescope on Nov. 29, 2011, and released Nov. 15, 2012.

From the perspective of an Earthling, outer space is a zone that occurs about 100 kilometers (60 miles) above the planet, where there is no appreciable air to breathe or to scatter light. In that area, blue gives way to black because oxygen molecules are not in enough abundance to make the sky blue.

Further, space is a vacuum, meaning that sound cannot carry because molecules are not close enough together to transmit sound between them. That’s not to say that space is empty, however. Gas, dust and other bits of matter float around “emptier” areas of the universe, while more crowded regions can host planets, stars and galaxies.

No one knows exactly how big space is. The difficulty arises because of what we can see in our detectors. We measure long distances in space in “light-years,” representing the distance it takes for light to travel in a year (roughly 5.8 trillion miles, or 9.3 trillion kilometers).

From light that is visible in our telescopes, we have charted galaxies reaching almost as far back as the Big Bang, which is thought to have started our universe 13.7 billion years ago. This means we can “see” into space at a distance of almost 13.7 billion light-years. However, astronomers are not sure if our universe is the only universe that exists. This means that space could be a lot bigger than it appears to us.

Radiation invisible to human eyes

Most of space is relatively empty, meaning that there are just stray bits of dust and gas inside of it. This means that when humans send a satellite to a distant planet, the object will not encounter “drag” in the same way that an airplane does as it sails through space.

The vacuum environment in space and on the moon, for example, is one reason that the lunar lander of the Apollo program looks so odd-shaped — like a spider, one crew said. Because the spacecraft was designed to work in a zone with no atmosphere, there was no need for smooth edges or an aerodynamic shape.

While space may look empty to human eyes, research has shown that there are forms of radiation emanating through the cosmos. In our own solar system, the solar wind — made up of plasma and other particles from the sun — permeates past the planets and occasionally causes aurora near the Earth’s poles. Cosmic rays also fly through the neighborhood, emanating from supernovas outside of the solar system.

During daylight, the sky appears to be blue

The sky (or celestial dome) is everything that lies above the surface of the Earth, including the atmosphere and outer space.

In the field of astronomy, the sky is also called the celestial sphere. This is viewed from Earth’s surface as an abstract dome on which the Sun, stars, planets, and Moon appear to be traveling. The celestial sphere is conventionally divided into designated areas called constellations. Usually, the term sky is used informally as the point of view from the Earth’s surface; however, the meaning and usage can vary. In some cases, such as in discussing the weather, the sky refers to only the lower, more dense portions of the atmosphere.

During daylight, the sky appears to be blue because air scatters more blue sunlight than red.[1][2][3][4] At night, the sky appears to be a mostly dark surface or region spangled with stars. During the day, the Sun can be seen in the sky unless obscured by clouds. In the night sky (and to some extent during the day) the Moon, planets and stars are visible in the sky. Some of the natural phenomena seen in the sky are clouds, rainbows, and aurorae. Lightning and precipitation can also be seen in the sky during storms. Birds, insects, aircraft, and kites are often considered to fly in the sky. Due to human activities, smog during the day and light pollution during the night are often seen above large cities.

The deepest reaches of the ocean

The ocean is a continuous body of saltwater that covers more than 70 percent of the Earth’s surface. Ocean currents govern the world’s weather and churn a kaleidoscope of life. Humans depend on these teeming waters for comfort and survival, but global warming and overfishing threaten to leave the ocean agitated and empty.

Geographers divide the ocean into four major sections: the Pacific, Atlantic, Indian, and Arctic. Smaller ocean regions are called seas, gulfs, and bays, such as the Mediterranean Sea, Gulf of Mexico, and the Bay of Bengal. Stand-alone bodies of saltwater like the Caspian Sea and the Great Salt Lake are distinct from the world’s oceans.

The oceans hold about 320 million cubic miles (1.35 billion cubic kilometers) of water, which is roughly 97 percent of Earth’s water supply. The water is about 3.5 percent salt and contains traces of all chemical elements found on Earth.

The oceans absorb the sun’s heat, transferring it to the atmosphere and distributing it around the world via the ever-moving ocean currents. This drives global weather patterns and acts as a heater in the winter and an air conditioner in the summer.